首页

APP 下载 六只脚

楼主: 晓残
打印 上一主题 下一主题

[聊聊] 音响.录音.噐材.唱片.音乐知识帖子集中营

[复制链接]
181#
 楼主| 发表于 2013-8-20 15:20:48 | 只看该作者
漫谈 火牛
各式各样的音响器材大部份都需要用电,要用电的一般叫有源器材,有些无需用电的,如扬声器等,叫无源器材。在有源器材中,除了小部份使用干电池供电的之外,其他的一般都接到市电上去,这些器材便需要电源变压器,也是我们俗称"火牛"的东西了。
  今天几乎所有HiEnd器材都使用了环型电源变压器(也叫环牛)而其他较平直的机种,则依然使用传统的方型电源变压器(也叫方牛)。由于方牛的铁芯是由E形和I形矽钢片合成的,故方牛又叫EI牛。HiEnd器材大量使用环牛还是最近十多年的事。一般经验告诉我们,环牛的高频响应较佳,另外相同重量的环牛,它的功率和动态余量还比方牛高,环牛一般造价较高,消费者会感觉它较矜贵,故HiEnd机用环牛便变得理所当然了。其实从技术角度看,环牛比方牛优胜的,恐怕是它的漏磁量远远比方牛低,于是机內的布线可以变得更容易灵活了。
  但近年有研究发现环牛本身原来有潜在的弱点,对声音好坏而言,人们需要重新为环牛和方牛的论争重新思考了。
  在深入研究两者优劣前,我们先看看他们的构造。先说方牛,它的线圈是绕在一个方型的骨架上,绕制非常容易,如果使用特殊的机器,一次过可以同时绕制很多个,故此它的造价较廉宜。线圈绕好后,便把矽钢片有次序地进去。第一次先放E形的矽钢片E和I合起来成了一个日字型,第二次掉转方向,先放I形矽钢片,这样I和E合起来也是一个日字,这样梅花间竹地起来直至线圈骨架的中空位置填满了就可以。
  环牛的构造就大不相同了,首先我们需要把长长的条形的矽钢片卷制成环型,当卷到需要的厚度(即达到所需的截面面积)就要把它放进炉子里加热来使它定形。定形之后就成了一个环型的铁芯,跟是铺上绝缘薄膜,然后漆皮线要穿过铁芯的中央孔绕在环上,这样的制作,需要特殊的机器,而且每次只能绕一个环牛,所以环牛的造价就贵得多了。
  至于把火牛固定在底板上,环牛就非常简单了,只要在环牛上下各放一软片,再在中心位置以一镙栓加上一个像大型"戒指"(washer)状的压片,穿过底盘,加上丝帽,便可固定。而方牛则有臥式和立式两种固定方法。一般胆机都用臥式,方法是把紧紧铁芯的四颗镙栓加长,穿过底盘再加丝帽。而其他的多采用立式的,是在方牛外加上有脚的外罩,再用螺丝把外罩的脚位固定到底盘上去。
  既然环牛在很多方面都比方牛优胜,那么有人便想到把它用作胆机的输出牛,不是会更好吗?可是造出来的效果却卻很令人失望,从测试报告中看,环型输出牛高频响应很高,效率也很高,但在听感上,却奇奇怪怪,形象点来说是胆机换上环型输出牛后便变了石机声。这种尝试很快便完结,再沒有多少人试了。但是不是环牛真的不能做输出牛呢?答案是钱作怪。经过特別设计和处理,环牛可以成为最好的输出牛,只是成本可能是方牛的几十倍。
  近来的研究发现了什么环牛的弱点呢?这要先看看我们使用的市电的特性。在香港和中国,供电都是220V,但从理论上说,这220V是RMS值,换言之它的最高正峰值和负峰值分別为220V×1.414=311V。这只是一个理想值,但在现实生活,由于市电受到各种工业器材的污染,充满各式的突峰(spikes),电源的正负对称往往给破坏,出现直流漂移(DCoffset),举例说,如果出现10V的直流漂移,正峰值是321V,负峰值是301V,这样供电的两端虽然仍维持220VRMS的交流电,但同时出现10V的直流。这种直流漂移可以是瞬间的,也可以是断续的和持续的。更可怖的是这种交流两端的不规则不对称性并沒有什么简单的对策,而直流漂移的幅度,可以是几伏,也可以是几十伏。
  方才说的直流漂移,正正是环牛的死穴。原来环牛的铁芯,本身是一个完整的环形磁路,故它的效率较高,可是这个铁芯基本上是沒有空气缝隙的,问题就出来了,当线圈出现直流时,铁芯由于高效而急速磁化,出现磁滞现象。当出现磁滞时,火牛的效率会急速下降。另外,由于环牛的铁芯是与外面绝缘的,铁芯感应到的电荷便沒有途径消减了。当遇到这种情况时,(其实在都市里,这情况是很普遍的)用环牛的机器声音会明显劣化。有时环牛甚至人产生鸣叫的现象。
  而方牛呢?情况恰恰相反,它的弱点是效率较低,频应较窄,但正是这点,它对直流漂移有很强的免疫能力。原来方牛的铁芯每一片都由一块E和一块I合成,本身沒有完整的磁路,这正是它效率低的原因,但它正因为每片E和I矽钢片都有空气间隙,钢片不可能过度磁化,因此不容易产生磁滞现象,这样这空气间隙就成了一个磁滞的安全阀。所以一点直流漂移根本不会对方牛有什么影响。资深一点的发烧友都会知道,单端式的胆机用的输出牛是有大量直流通过的,这种牛的铁芯,并非把EI矽钢片梅花间竹地起来,而是一边是整组E片,另一边是整组I片。
  而且通过特殊的绕制方法,譬如双线并绕、反接、交叉等等,方牛是可以做到比环牛高20-30dB的噪音排斥力。这可不得了,因为20dB,就是原噪音的一百分之一,而30dB就是一千分之一了。
  那么,先前说的超级环牛又是怎样造出来的呢?道理很简单,只是在铁芯上加上间隙和把铁芯用引线接通带出,然后接到机壳上,导出感应电荷。这可以说是知易行难,要把环牛铁芯上一度0.02"的间隙,这相当于一张纸的厚度,目前只有激光才做到。就是做到,环牛的效率也降低了,重量的优点也不存在,这种做法是否值得,那就见仁见智了。
回复

使用道具 举报

182#
 楼主| 发表于 2013-8-20 15:21:08 | 只看该作者
关于“煲机”(转贴)

  “煲机”源自英语Break-in,具体操作是让新的音响器材连续工作相当时间,以期器材充分发挥性能、改善音质,就象内燃发动机的磨合。这个问题大家也许谈得不少,但大多忽视一个情况,就是“煲机”并不是对每一台新设备或新器材都能奏效,它并不存在普遍性。但对某些器材却是非“煲”不可,“煲”前“煲”后音质的变化可使你大吃一惊,在这里并没有什么规律可循。不过有一点可肯定,那就是可靠性差的器材,可能会越“煲”越差。还有对大多数中、高档次新的音响器材进行“煲机”都可能会收到效果。“煲机”最好用音乐节目自然去“煲”,一般应以正常音量“煲”约48小时,音箱的时间更长,甚至需要数百小时,“煲机”的效果主要表现在高频圆润度、低频控制力、细节表现诸多方面。

  SL-6Si是CELESTION公司凭多年经验和英国传统音响概念制造出来的一款中价音箱,打开包装可见附有检测人员亲笔签名的音箱测试曲线,箱体制作严谨细致,使人放心。但新箱试听却使人大失所望,尽管声音平衡,分析力不错,速度良好,就是少一份感情,声音也放不开,好象睡梦未醒般,万般无奈,只能求助于“煲”,连续输入较大功率信号数小时后,感觉上有所改善,于是乎将两只音箱面对面放着“煲”,免得吵人耳鼓,经过数天的努力,重新摆位试听。一听之下始知这对音箱的好处在于声音畅而不松,质感细腻,高音明亮而十分悦耳,大音量时气势宏伟,低音富有震撼力而仍有较高分析力,具有一种艺术魅力,耐听而有回味是它的最大特点,一扫开箱时那种使人失望的腔调。此是笔者亲身经历,亦是“煲机”之说的一个例证。

  有些功率放大器新机的声音有尖硬感,放声似有一层云翳,经一段时间通电工作后,高频会趋向平顺,而且力度更足。又如某些激光唱机也需播放数十小时后,才能真正听到好声音。总之,“煲机”对不少音响器材而言,确有成效,甚至有意想不到的效果,但“煲机”时间有长有短,更有不少器材对“煲”并无反应,并非万机一“煲”是灵药。
回复

使用道具 举报

183#
 楼主| 发表于 2013-8-20 15:21:32 | 只看该作者
功率放大器的回顾

功率放大器的回顾
     音频功率放大器是一个技术已经相当成熟的领域,几十年来,人们为之付出了不懈的努力,无论从线路技术还是元器件方面,乃至于思想认识上都取得了长足的进步。回顾一下功率放大器的发展历程,对我们广大音响爱好者来说也许是一件饶有趣味的事情。
索引:
一、早期的晶体管功放
二、晶体管功放的发展和互调失真
三、功放输入级——差动与共射-共基
四、放大器的电源与甲类放大器
五、其他类型的放大器
-------------------------------------------------------------------
一、早期的晶体管功放
   半导体技术的进步使晶体管放大器向前迈进了一大步。自从有了晶体管,人们就开始用它制造功率放大器。
   早期的放大器几乎全用锗管来制作,但由于锗管工艺上的一些原因,使得放大器中所用的晶体管,尤其是功放管性能指标不易做得很高,例如,共发射极截止频率fh的典型值为4kHz,大电流管的耐压值一般在30V一40V左右。这样,放大器的频率响应也就很狭窄,其3dB截止频率通常在10kHz左右,大大影响了音乐中高频信号的重现。再加上功放管的耐压、电流和功耗三个指标相互制约,制作较大功率的 OTL或OCL放大器不易寻到三个指标都满足要求的管于,所以不得不采用变压器耦合输出。变压器的相移又使电路中加深度负反馈变得很困难,谐波失真得不到充分的抑制,因此这一时期的晶体管放大器音质是很差的。“还是胆机规声”,这种看法的确事出有因。
二、晶体管功放的发展和互调失真
   随着半导体工艺的逐渐成熟,大电流、高耐压的晶体管品种日益增加,越来越多的功率放大器采用了无输出变压器的 OCL电路或 OTL电路(图一)。 最初的大功率 PNP管是锗管,而 NPN管是硅管,两者的特性差别非常显著,电路的 对称性很差,人们更多采用的是图二所示的准互补电路,通过小功率硅管 Q1与一只大功率的 NPN硅管 Q2复合,得到一只极性与PNP管类似的大功率管,降低了电路因对称性差而招至的失真。 到了六十年代末,大功率的 PNP硅管商品化的时候,互补对称电路才得到广泛的应用。元器件的进步使晶体管功率放大器的技术指标产生了质的飞跃,在主观音质评价方面,也改变了过去人们对晶体管功放的看法,无论是在厅堂扩音、电台节目制作还是家庭重放,晶体管功放都被大量地采用,首次在数量上以压倒性的优势超过了电子管功放。在商品化的晶体管扩音机中,相继出现了一些摧琛夺目的名机,如 JBL的 SA600, Marantz互补对称电路MOdel15等等。
   尽管电子管的拥护者仍大量存在,人们毕竟能够比较公正地看待晶体管放大器了,认为晶体管机频响宽阔,层次细腻,与电子管机比较起来有一种独特的舱力,而不是简单的谁取代谁的问题。
   瞬态互调失真的提出是认识上的一次飞跃七十年代,功率放大器的发展史中出现了一件最引人注目的事情,这就是瞬态互调失真 (Transient lntermodulation)及其测量方法的提出。1963年,芬兰 Helvar工厂的一名工程师在制作一台晶体管扩音机时,由于接线失误,使电路的负反馈量减少了,后来却意外地发现负反馈量减少后的音质非常好,客观技术指标较差,而更正错误以后的线路尽管技术指标提高了,音质反而比误接时明显下降。 这一现象引起了当时同一工厂的 Mr.Otala的重视,之后,他对此进行了悉心研究,于1970年首先发表丁关于晶体管功率放大器瞬态互调失真(TIM)的论文。至 1971年,Otala博士及其研究小组就 TIM失真理论发表的论文已经超过20篇,引起了电声界准互补电路人士的广泛反响。
   瞬态互调失真的大意是这样的:
   在直接耦合的晶体管放大电路中,为了得到很小的谐波失真度和宽阔平坦的频率响应,通常对整体电路施加深达40dB一60dB的负反馈,倘若在加负反馈前放大器的开环失真为10%,那么加上40dB的负反馈后,失真即可降低至0.1%,这是电子管功效难以做到的。 晶体管功放由于要施加40dB。60dB的负反馈,所以对一台增益要求为26dB的放大器,它的开环增益就要达到66、86dB。
如此高的增益之下引入深度负反馈,电路势必会产生自激振荡,因而需要进行相位补偿,一般是在推动级晶体管的集电极——基极之间接接一个小电容 C,破坏自激振荡的相位条件,形成所谓“滞后补偿”,
   当放大器输入端输入持续时间非常短的过渡性脉冲时,由于电容 C需要充电时间,所以推动管集电极电压要经过一段时间延迟方能达到最大值,见图四。显然,在电容 C充、放电期间,输出电压 V。将达不到应有的电压值,输入级也不可能得到应有的反馈电压 Vf,因而,在过渡脉冲通过输入级的瞬间,输入级将处于负.反馈失控状态,致使输入级严重过载,输出将严重削波(图三 a点),引起过渡脉冲瞬时失真(图五)。如果过渡脉冲波形上还叠加有正弦信号,输出端还会得到很多输入信号频谱不存在的互调频率成份,这就是 TIM失真。
   TIM失真和音乐信号也有密切关系,音量大、频率高的节目信号容易诱发 TIM失真。严重的 TIM失真反映在听感上类似高频交选失真,而较弱的 TIM失真给人以“金属声”的不快感觉,导致音质劣化。至今,音响界对于 TIM失真都还有争议,但这毕竟是人们认识的深化,它使后来放大器的设计思想发生了根本性的变化,即更加注重放大器的动态性能而不是仅仅满足于静态技术指标的提高。
三、功放输入级——差动与共射-共基
   对称和平衡是电路发展的方向对称和平衡也许是世上事物完美的标志之一。
音乐讲究各声部之间的乎衡与统一,美术以色彩搭配均衡、和谐为美,在服装设计中,常常采取看似不对称的设计,其实质也是为了取得视觉上的均衡。上面所说的都是艺术,对称和平衡给人一种安定、完美的感觉。有意思的是,在功率放大器中,对称和平衡也有类似的效果。
   最初采用对称设计的例子要算互补对称电路了,一上一下的两只异极性晶体管作推挽输出,不仅可以免除笨重的输出变压器,而且电路的偶次谐波失真在推挽的过程中被抵消了,保真度有了很大提高。稍后,人们从运算放大器的设计中得到启迪,将左右对称的差动式电路用于功率放木器的输入级,电路的稳定性和线性都得到改善,这时的电路结构如图六所示,这一结构直至今天都还有人采用。 如果以现代的眼光来审评,这一电路是显得过时了一点。电路的主要缺陷在于电压推动级,因为 Q1承担了提供电压增益的主要任务,必然是开环失真很大,频带狭窄。此图六 典型的 OCL放大器外,单管放大的过载能力也很差,这一系列的缺点是不利于电路的动态性能的。围绕着改进电压推动级的性能,人们相继提出了多种结构,共射——共基电路就是一个典型的例子。
   共射——共基电路又叫“猩尔曼”电路,它原先是高频电路中广为采用的结构,但用于音频电路中同样可以发挥出色的性能。首先是它的宽频响,由于共基放大管 Qs非常低的输入阻抗,使 Q,丧失了电压增益,弥勒效应的影响就非常微弱。 宽频响的推动级拉开了与输入级极点的距离,相位补偿变得很’容易,而且电容 C的容量可以大大减小,这对于改善 TIM失真是很有利的。 第二个优点是电路的高度线性:共基极电路的输出特性也可以清楚地显示出这一点,有人作过测试,共射一共基电路的失真度比单管共射电路要低一个数量级。
   依然是一种不平衡的设计,这一限制来源于输入级。如果把输入级变动一下,从互补推挽的 Q:和Qg的集电极输出信号,那么电压推动级就可以在图七的基础上再增加一组 NPN管构成的共射一共基电路,做到推挽输出,这时电路也就非常对称平衡了,几乎达到了完美的程度。
   当今许多最先进的功率放大器采用的也是这种电路结构。图八是另一种电压推动级的形式,其输入信号来自图六中的 Ql和 Qs,当然此时 Qz必须加上集电极负载电阻。电压推动级也采用对称的差动放大,这不仅可以改善输入级的平衡性,提高放大能力和共模抑制比,而且同样可以降低推动级的失真,因为差动式放大电路当输入在一定的范围内时具有线性的传输特性,有的电路还在 Qn、 Qz的发射极串人负反馈反阻,更加扩大了线性范围。 Q2和Qd构成镜像电流源,把 Q,的集电极电流转移到 Qz上,所以尽管是单端输出,电流推动能力却比原来增大了一倍。 PIONEER的M22K功率放大器就是采用的这种电路结构,取得了非常好的效果。对称和平衡不仅体现在电路的结构上,还表现于元器件的参数上。差动电路是集成运放中广泛采用的结构,其性能是建立在两只差分管 Hrs和 Vss精确匹配的基础之上。同样,推挽电路中,如果两只异极性的晶体管特性不一致时,对波形的两个半周就不能做到一视同仁地放大,这将增力D电路的失真度。
   随着节目源的变化,音乐中包含大量瞬变、高能量的成份,要完美地重现这些细节,就要求放大器具有良好的动态响应,对晶体管配对的要求就不仅是静态的 HrR和 VBE匹配,而且在动态时也要高度匹配,这无疑对元器件参数的平衡提出了更苛刻的要求。 幸运的是,半导体技术的进步为我们提供了这种可能,各种各样的差分对管、晶体管阵列陈出不穷,单个的晶体管一致性也得到较大提高。正是这些优质的元器件,让对称电路设计的优点得以充分体现,今天看到一台全无负反馈的电路也不会觉得惊讶,因为已经有足够好的开环性能了,又何必为了几个仪器上的数据去牺牲放大电路的动态响应呢?
四、放大器的电源与甲类放大器
   极端重视电源的现代放大器“放大器不过是电源的调制器”,这句话道出了放大的实质。
   既然如此,又有什么理由不引起对电源的高度重视呢。电源部份作为推动扬声器发声的源泉,再也不应象过去那样随便找个整流电源接上了事。对电源的要求有两个方面,即纹波噪声小,输出能力强。噪声小比较容易办到,只要加大滤波电容器的容量就可以,但是要做到输出能力强却不简单。
   首先要加大电源变压器的容量,这是过去一些放大器生产厂所不乐意的,因为加大电源变压器容量会使成本大量增加,整机的重量和体积也会加大;但现在听小喇叭的人越来越多,这些小喇叭大多效率很低,有些名牌音箱如 Celestion SI一6O0或 Ro3ers LS3/5a,十分大食难推,再加上现代节目信号中常常出现一些炮弹爆炸,锣鼓敲击的声音,对放大器是一个极为严峻的考验,同样两台100W的放大器,一台可能让你感觉到大炮地动山摇的震撼力,而另一台可能象是破鼓在“咐咐”作响。所以现代优质的功率放大器的电源储备量十分惊人,往往采用巨大的环形变压器,再配合容量达数万甚至数十万徽法的电容器,以提高电源的瞬时供应能力。 KRELI的功率放大器号称“功率发动机”,如 KSA一250功效,在8Ω时输出功率为250W/每声道,4Ω时为5O0W,2Ω时为1000W, lΩ时为2000W,而且任何状态下失真均小于0,1%,真是惊人 ! MarkLevi2zson的产品也是极端重视电源的典范。提高电源 的质量,不仅是量的加大,还有质的提高。滤波电容是一个关键,它除了起平滑滤波和储能的作用以外,还是音频信号的通路,因此优质放大器中常常采用专门为音响用途而生产的电容器,以求获得更好的音质。 KRELLKAS放大器中,电源部份竟然采用稳压电源供电,这台机器可以在纯甲类状态下输出400W的功率,为此,其电源部份也付出了采用60只大功率晶体管的代价。
   重视电源的一个副产物就是甲类放大器再度成为时尚(这并不是贬意)。甲类放大器一直因为耗电多,效率低而未能在大功率的放大器中得到应用,但它天然的优点是无交越失真,无开关失真,并且谐波分量中主要是偶次谐波,在听感上十分讨好听众,故而一些极度发烧的爱好者和厂家仍不惜代价地制作甲类放大器,电源储备量的提高更是为制作甲类放大器提供了有利的条件。
五、其他类型的放大器
   最好的功率放大器还没有出现人们对功率放大器的研究一刻也没有停止过,新的元器件、新的电路形式、新的理论不断出现,放大器的研究也针对这三个方面全面地铺开。不器件上, VMOS管的使用是八十年代以来的一个新动向。
VMOS管频响宽、线性好、无二次击穿以及电压推动等一系列优点吸引了越来越多的使用者,它的音色也与电子管很接近,投合了胆机迷的口味。 现在主要是缺乏品种众多的 P沟道互补管,这个问题相信很快就能解决。
   IGBT也是值得注意的一种新器件,它由 MOS管与双极晶体管复合构成,兼有 VMOS管的电压激励和双极晶体管压降低的优点,很有发展前途。电路的研究以日本的各家公司最为活跃,近年来,一些公司从全新的角度提出了一系列电路,如YAMAHA的 ALA, SONY的电流传输,Technics的 CLASS AA, DENON的双超线性,还有英国 Quad的电流倾注,都试图消除失真的产生,可是人们更欣赏的却是以精良元件和精湛工艺制作的不带这些附加措施的放大器。
   此外,对电路的客观技术指标与主观音质之间的精确关系还有待弄清,这需要有新的理论作为指导。国内外的学者们从不同的角度提出了全新的理论,有的认为人耳的动态听觉上限超过了20kHz,有的提出了计权失真度的概念,认为人耳对不同频率的失真具有不同的感知阂值,从10%到0.01%,并给出了实验得出的阂值曲线。在上述的观点指导下,必然要制作频带更宽,全频带失真都极低的功率放大器,而且节目源也有待改进,当然这些理论的正确性需要通过实践的检验。
   新的技术飞跃往往是新材料、新理论、新方法的出现之后产生的,音频放大器同样也不会例外。在科技日新月异的时代,我们有理由期待更完美的功率放大器的出现。
回复

使用道具 举报

184#
 楼主| 发表于 2013-8-20 15:22:13 | 只看该作者
论发烧的艺术[转帖]

许多发烧友认为音响仅仅是重现声音的载体,发烧的美感来自原本声音所表达的内涵,所以艺术的是声音,并非音响。毫无疑问,这是一种基于对Hi-Fi理想的狭义认识。因为,它不能,也必须不改变声音原有的任何性质。这对于必须实现真实声音的要求而言,这样理解发烧也并没有什么不妥的地方,高级的剧院、音乐厅是不依赖音响来放大声音的,即使有音响,也要在保证对原声音不造成明显影响的条件下使用。但随着时代的进步,今天的音乐表现已更多地依靠音响来实现了,如果流行音乐和通俗歌手没有音响来创造效果,烘托气氛是不可想象的,尤其是电子音乐;对于音乐爱好者群体来说,利用音响来适应自己的欣赏趣味也是很普遍的。据国内一项调查,结果有27%的人认为音响的音乐更美,有28%的人则认为在音乐厅听音乐才美,其他人或认为差不多、或说不知道;而发烧友们,虽然仍然在坚持"真"的观点,但更多的人并不反对有音染的"美",在欧美有的发烧友甚至是用音响创造自己的"美"。可见真正将Hi-Fi作为审美标准来坚持的人已少之又少了。
   
     音响是声音的载体,但它是能够改变声音效果的,即使是被公认为Hi-Fi极品的产品也是一样的不"真"。那么什么才是"真"的呢?就音乐创作到发烧欣赏的过程中,应当说只有乐谱才是音乐有形存在的本原,它才是唯一的真实。音乐声的产生只是演奏产生的结果,它包含了指挥与乐队共同的艺术再创造以及乐器和配器所能产生的各种声音效果,如若要Hi-Fi,那么就应当只有一种声音。而我们从音响听到的声音,又是经过录音、音响重放、环境干涉得到的结果,它也是被"加工"了的音乐声,又为何不可以是对原音乐的艺术再创造呢,不是许多发烧友都有自己的听音偏好吗(这里不是指对某些音乐类型的喜好)?所以,Hi-Fi只应作为音响制造的标准,把它作为声音欣赏的标准反而是有害的!因为,音响没有Hi-Fi作为保证,就会失去对音乐表现的基准,这与没有好的乐器就不能正确实现乐谱音准的道理是一样的。相反,对声音的欣赏,则是在听到正确的声音的基础上,也要满足个人对这些声音效果体现的喜好和多方面的乐趣。
   
     尽管在发烧中音响、乐器、乐队、录音的作用各不相同,但作为载体的性质却是一样的。一切艺术都必须依赖于一定的载体,发烧就是利用音响作为载体形式而实现声音欣赏的。每一套以不同方式、不同产品、不同环境组合在一起的音响对其重现的声音都有不同的艺术效果,就和一件件的艺术品一样,但在人们固有的观念中音响只是一种器用而已,所以谈不上是艺术。其实有许多我们现在称为艺术的东西,原先也是以实现功利为目的的器用,陶瓷艺术品、教堂庙宇、佛像、典籍、圣歌和祭祀音乐…无不是这样。而器用又是怎样才转变为艺术的呢?这主要就要看它有没有超越其功利,能够引起审美趣味的东西了。就音响而论,且不说在录音中,DJ必须要根据自己对音乐的理解和音响器材声音还原的特点对原声音进行艺术处理,就是放大器制造中的声音调校也需要有丰富的审美体验和对组成元件音效的了解。在70年代以前,使用放大器只是为了得到适当响度的正确的声音,厂商和DIY们在放大器设计制造中主要还是从减少失真来考虑问题的,对放大器的音效影响并不太在意。其后,随着Hi-Fi音响在家庭中的普及,大家才逐步认识了怎样用音响器材获得所需美感的方法和体现审美趣味的方法,对电路结构、有源器件、无源器件、线材产生的声音效果进行了大量探讨,使今天的人们更加追求于用音响进行对声音的欣赏体验,而决非仅仅是为了Hi-Fi。于是使音响产生了对其功利的超越,转向了对审美趣味的体现。
   
  如果我们这里假定发烧是一门艺术,那么我们下面再对发烧艺术的形式、形象、意味如何形成,是什么作用做一番讨论。
   
     任何艺术形式的形成都是历史积淀的结果,发烧也是从最初只是为了实现放大还原声音的功能发展到如今对声音效果的控制,而为发烧走向艺术提供了表现形式的。尽管现在人们还不能通过设计和参数控制来预知音响器材对声音的全面影响,根据目的来制造出音响器材,但我们毕竟已经基本掌握了许多元件、电路、器材对声音效果的影响,还有许多发烧友仍然坚持不懈地在对每一种元件及其参数的作用进行细致入微的研究,加深对电路结构的认识从而改进电路和其制作工艺,探讨音箱的形状、扬声器材质对声音重发的影响,利用数字技术提高信号的保真度,应用器材配搭实验实现声音欣赏等,知道如何控制器材,使声音的表现变得冷、暖、厚、薄、快、慢等,满足自己对声音欣赏的趋向,这就为发烧艺术的形式发展建立了广泛现实的基础。这里,我们还可以看到,发烧作为技术与艺术的统一体正是在这一点上结合起来的。
   
     在大量实践中,发烧友们通过对音响器材的使用,逐步形成了对声音各种效果变化的领悟、想象、理解、感受和感情,使发烧中的合规律性和合目的性在感性中得到统一,产生出了审美的愉快和心理结构,并使声音效果的表现突出在对声音领悟的感知之中。另外,具体的音响器材使用带来的效果也会影响人们对声音的感知,电子管的黯淡微光总是与温暖的音色形成联想,号角音箱本身就让人感到有气势和声音的力量,老式的器材往往有种古典的意味……从心理上影响人们对欣赏其声音效果的评价。应用什么器材,表现什么声音,对我们感知声音效果也是很有讲究的,许多人都认为听古典音乐用有"英国音"的器材更好,有"美国音"的器材长于流行音乐、爵士乐的表现,室内乐则更符合"德国音"那种冷静凝重的特点……随着现代音乐发展和与影视艺术的结合,表现声场流动的作品已屡见不鲜,而这已非2 CH的两路立体声系统所能表现,于是产生了THX、DTS、AC-3等多声道的系统,创造了更新的声音效果感知形式。发烧感知形式的发现、创新是非常困难的,要突破固有的感知形式,引起新的审美,就必须把声音审美发展的时代要求与器材制造结合起来,以一时、一事所得的独自心得,是难以成功的。当然熟悉传统欣赏形式的人也会提出种种理由、列举种种缺点反对新出现的艺术感知,然而艺术形式的发展永远都将随着时代发展不断进步,因为它在历史积淀的基础上,正通过人们对声音审美的认识向更宽广的感知世界延伸着;向现实世界的社会性、时代性延伸着。
   
     作为感知形式,除了具体的外,也可以是抽象的,如把声音分类为稳定的-运动的、清晰的-模糊的、理智的-感受的、古典的-浪漫的……就是抽象化、符号化的结果,而这种结果又会通过审美对声音表现的感知产生整体的影响。由于抽象的过程来自对大量具体声音的感知,一旦形成就很难从意识中被抹掉,所以它是一种思维定势。这种思维定势不仅存在于个人头脑中,也会产生社会影响,例如把Hi-Fi作为声音欣赏的标准,就是这种抽象感知形式的结果,是一种以零变化为符号的理想的感知,并非是发烧友们无视于时代、社会发展已经带来了新的对声音感知形式,故意要采取保守的态度。因为每个人的实践过程不同,其抽象感知也不尽相同,往往大家在探讨声音赏析的时候,虽然采用的符号是相同的,却理解不同,最后才发现并没有说到一起去。由此可见,抽象感知形式虽然来自具体感知形式,但它的存在方式却与具体的感知不同,它主要影响的是更深的意识层,所产生的审美影响比具体感知更为深刻,在审美中发挥着更大的作用。
   
     形象是艺术对其题材、主题、内容等的具象体现,与人的情感有着紧密联系,在欣赏中表现为对艺术情节所呈现的人的本能、冲动、希望、要求、期待、恐惧等的认同和从艺术幻象中的自我实现,从而打动人、感染人、启发人、激励人、陶冶人。由此可见,发烧中这样的形象是依赖于具体的声音,如音乐来实现的,音响器材并没有这些特质。这也是为什么许多发烧友要否定发烧是艺术的一个重要原因。但是,如果我们将音响器材对声音效果的改变与具体声音的表现联系起来考虑,就会不得不承认这时我们听到的声音形象已经被改变了,形成了新的艺术形象。而且声音效果改变后,所产生的一些特殊效果,其带来的情感影响也是很不相同的。对不同的音乐,要用不同的音响器材来表现,才能相得益彰,早已是发烧友们的共识,否则将摇滚乐配上阴柔的器材就会没了激情,交响乐用"亮而薄"的机子就会索然无味,中国古曲如果声音太厚可能就要有损于意境……总之,音响器材虽然本身并不创造形象,却在影响着形象的产生,所以不应孤立地看待发烧艺术的形象的问题。
   
     计算机和数字技术的迅速发展,使人们在获得原声音的各种性质方面、创造新的声音特征方面、设计声音效果方面、创作编辑声音方面都取得了巨大进步,为发烧友们不再依赖外界制造出自己的声音作品、树立自己心中的声音艺术形象提供了优越的技术条件,就当前欧洲利用计算机自编自演音乐的大众性实践与探索发展来看,谁能料定今后的哪一天不会产生出一群自己制造声音来欣赏的发烧友呢!到那时,发烧也就真的"假"了。
   
     艺术品之所以可以激动人心,造成可持续的品味,都是因为艺术品有它自身的"意味",体现着人性之于艺术的可实现程度。为什么"中性"、真实的音响器材喜欢的人不多?为什么会对温暖、柔和、醇厚的音色表现赞赏有加?为什么一些器材名噪一时之后就无人问津?所有这些都与音响所形成的意味有关。成功的艺术是开放的,"以美启真"才符合人类特有的文化-心理结构,能长久存在下去。麦景图、电子管不就是如此吗?Hi-Fi的理想固然非常美好,可是人们的心理欲求则是多样性的,这是谁也不能否定的事实。

     艺术的意味源于生活,是对形式、形象的升华,好的作品能够直指人心,让人感到"生命可贵,值得活着",才是其最高的境界。我们的先人很早就发现了声音对人情绪变化的影响,认为:"乐也者,情之不可变者也,礼也者,理之不可易者也",把"乐"与关呼社会命运的"礼"放在同等重要的地位,并且还说:"致乐以治心","君子听之,以平其心,心平德和"。人对声音意味的体会是历史渊远的,它发生于巫文化之前,所以它能直接发自内心,感物而动,表现生命经验的形式,成为社会普遍的感情。好的音响器材,能通过对声音的欣赏,使人深入声音的本质,体味出更多的意义,平静心灵、抚慰忧伤、激励志气……其作用也是一样的。

     音响已经越来越成为了现代人生活中的一部分,"发烧"终将对心理-情感本体产生深刻的影响,改变人们审美的方式,形成新鲜的感知、理解、想象、宣泄的经验,成为个体自我完成的意识,发挥出生命的潜力和才能,创造出更丰富的生活形式,使我们的身心能够时时常新!
回复

使用道具 举报

185#
 楼主| 发表于 2013-8-20 15:22:37 | 只看该作者
玩音响应该具备些什么?

钱!对,玩音响没钱不行。一套音响设备少则几千元,多则几十万上百万元。得是,是不是有了钱,买回一套价值不菲、能播出声音的设备就叫玩音响呢?是不是低收入的普通工薪族就只能在HIFI门外徘徊呢?
    一些先富起来的大款们不论出于什么目的,大多都拥有一套从商品价值来说非常高级的音响,家里摆放的不是金嗓子就是麦景图,ATC、卓丽、AE等名牌音箱更是让烧友们看了直流口水,是不是这些大款们都是音响,手里把玩的除了自制的土炮音箱、功放外,还有经过打摩的CD机,论品牌名不见经传,论商品价值除几个元器件值钱外其它的都是自己的手工制作,但您却能在发烧圈里常常看到这些朋友的身影,听到他们对发烧文化的高谈阔论,不论是音响器材、电子线路;还是发烧经验,音乐欣赏都能说出个一二三。
    由此可见,玩音响肯定是需要钱的,但并不是一定要有很多钱才能实现的。我们换个角度来说,一个拥有十万元级音响的大款,家里除了几张VCD、DVD碟片外,连一张正版的音乐软件都没有,那套高级音响在其家中充其量看看家庭影院,唱唱卡拉OK,声场、定位、音质一切免谈。而一个只拥有几千元土炮的音响的朋友,却能让你在他的音响里听出音质的优劣;表现出钢琴的雄伟、小提琴的纤细,大鼓的低沉和小号的明亮,与之交谈,还能听到一大堆足以让人回味的音乐和音响理论。您认为是谁更像在玩音响呢?当然,有钱是玩音响的首要条件,但在玩音响这个领域,只是有钱那是远远不够的,钱并不是必要条件。
    其实,玩音响更多的是需要玩者的兴趣;需要有艺术的修养;需要兼备物理学、电子学、结构学、生理学等各方面的知识。我们所说的“玩”实际上应该是一种多学科、多领域相关知识的综合应用,是一种把科学技术与音乐艺术相结合的个人化艺术修养活动。
    谈到艺术,一方面是艺术本身的存在,另一方面是欣赏这种艺术的人,而最主要的却是人的一种参与性。如果看电影或看戏剧时,我们清醒地告诉自己;“那是在做戏,银幕上和台上的都是假的”。那我们就会把参与的权利或者说参与的意识给剥夺了,自己就会对电影或者戏剧感到毫无兴趣。人们之所以会被艺术所打动,这实际是是一种参与的结果。要领略到艺术的魅力,我们就必须参与,而且参与的程度越深,领略到艺术的趣味就越多,也就越能享受到艺术的美。一方面是人本身参与艺术的愿望和要求,而另一方面,是艺术要留有给人们参与的空间。让人一目了然的艺术品不一定是件好的作品。这咱作品让人感到索然无味。反过来说,如果一件作品过份深奥,人们也难以认识,自然也不会给人们留下参与的空间,同样难以让人产生兴趣。
    就音响而言,不论是欣赏音乐大师们优雅的音乐作品还是欣赏打烂玻璃、枪炮齐鸣等特殊音响效果,其目的都是一致的,那就是要求将录音师制作的音乐软件真实地还原出来,再现在听者的面前,音响理论将这种实际听感与原来录音之间的差别称为“还原度”。这种逼真的还原过程就是理智的音响玩家们的最终追求。它是如此地具有魅力,以至于让发烧友们不惜人力物力财力,毕生追求,毫无回头之意。这正是音响艺术留给人们参与的极大空间。从艺术的角度来讲,这就是“留白的艺术”。
    画家和雕塑家的创作最讲究的就是留白,顾名思义,留白就是在作品中留下相应的空白。简单地说,它不是表示无,而是表示了一定的空间。同时在作品中形成虚实的对比,以产生变化,来达到气韵生动的效果。它引起了人们不尽的赏玩,不尽的品评,从而带来无尽的妙趣横生。诗人、散文家和小说家的创作也讲究留白,它勾起人们无限的遐想,无尽的体验。人们热爱它们,就是因为这一切能让人们产生无穷的美感。对音响逼真还原的追求,就是体验这种留白过程,一方面大家都知道,从原始声音通过录音再将它还原出来就目前的技术而言肯定会有误差和损失(也就是常说的失真)的,另一方面发烧友总希望失真越小越好,希望将原始的声音完完全全、原原本本地搬回到自己家里、重现在自己的面前。这种对声音逼真还原追求自然会引起发烧友们无尽的参与,他们必须应用已经学习到的相关知识甚至学习更多的其它知识,通过动脑动手来实现这种声音完美再现的追求,从而在这一过程中产生无限的乐趣,并且在这种无限中显现着玩者的品味和修养。每次的进步与成功都是成绩的体现;都是音响艺术修养的一次提升。
    有这么一位发烧初哥,说是初哥只是说他步入音响发烧的时间不长,但论年纪,却是一位已经退休的建筑工程师。一套仅值几千元的音响,在他的手里可以说是玩之不尽。为了能充分发挥那套音响的最佳效果,他对自己那套音响进行了仔细研究,音箱被他折成了箱体和元件,从结构、用料、做工到元件的选用、线路结构一一进行研究。为了调整音场,不仅精确地计算了家里所有房间的混响、延时时间;大动干戈把客厅四壁用一些难以入目的吸音材料装饰了一番;还查阅了许多资料和学习声学原理,做了大量的听音实践。为了弄清声音的残响是怎么回事,甚至将音响搬到卫生间至试听。现在,这位发烧友依然在孜孜不倦地研究和学习。可以说这位老初哥从玩音响中得到了乐趣,学到了以前没有学到的知识,在玩音响中得到了艺术的升华。这不正是真正的发烧精神吗?这种行为不正是一种真正对音响艺术的正确追求吗?
    在这里我一直都在说一个“玩”字,似乎一点也不严肃,仿佛是无关紧要的东西一样。其实对于现实生活中的人来说,“玩”是如此的重要,以至成了人们的一种生活方式。工作之余,都愿意投入到轻松愉快的“玩”中去。可以说,玩是和工作一样重要的大事。记得有这样的名言:“不会玩的人就不会工作”。如果说玩音响不严肃的话,我们就有理由说欣赏音乐、绘画、雕塑、书法和文学的作品,就是玩世不恭。这显然是不对的。当我们因艺术作品的卓越而对那些艺术家们尊敬有加时,我们也因艺术作品的卓越而对那些艺术家们尊敬有加时,我们也应该给创造音响这种特殊艺术品的工程师们留下一席之地。当我人通过音响这种特殊艺术品的工程师们留下一席之地。当我们通过音响欣赏心爱的音乐时,难道会对音响的创造者、制作者无动于衷?如果说音乐是音乐家们留给人类的宝贵财富的话,那么音响有可能就是打开这些财富的金钥匙。
    游戏是轻松愉快的事,但是玩音响却是极其严肃而且极其艰苦的事。我们对音响艺术的追求事实上是一种一贯的行为,大凡资深一点的发烧友都有过这样的经历。在过去的年代里,表现为对各种收音机、录音机、落地式音响的追求,到了现在,已经上升到对Hi-Fi、HI-END的追求,事实证明人们的追求也是阶段性的,还远远没有达到尽头,甚至可以说永远无法达到尽头。发烧历程已经从矿石收音机进化到HI-FI时代,而SACD、DVD-AUDI0、数字音响正不停地向发烧友们暗送秋波,所谓HI-END只是一种理想的说法,它并不意味着HI-FI时已经END了。这种追求得以实现的基础是高科技的发展,同时还有地域文化的丰富积淀。事实让我们看到,科技上具有领先地位的美国,音响是首屈一指的。但就品味而言,具丰富文化积淀的欧洲所生产的音响却独占鳌头。电子技术极其发达的日本却造不出几款让发烧友满意的音箱。所以在发烧界才会有所谓英国声、美国声、德国声等等不同音响声音表现的风格之分,这难道还不能说明地域文化对艺术的影响力有多大吗?
    以上杂谈,只想向朋友们表明:玩音响是多么的艰辛,但又是多么地富有艺术魅力,它包含了发烧友们的多少追求,同时也显现出这一群特殊的人在这一领域的修养与品味。当我们努力在艺术的殿堂中寻觅适合自身艺术欣赏要求的音响器材时,也就在音响这一行业的不断发展过程中为我们自己提出了更多的要求,我们就不可回避地思考到“玩音响,我们应具备些什么?”这个发烧友们必然要遇到的严肃问题。
回复

使用道具 举报

186#
 楼主| 发表于 2013-8-20 15:25:19 | 只看该作者
浅谈电源滤波用电解电容
电容器(capacitor)在音响组件中被广泛运用,滤波、反交连、高频补偿、直流回授…随处可见。但若依功能及制造材料、制造方法细分,那可不是一朝一夕能说得明白。所以缩小范围,本文只谈电解电容,而且只谈电源平滑滤波用的铝质电解电容。
  每台音响机器都要吃电源─除了被动式前级,既然需要供电,那就少不了「滤波」这个动作。不要和我争,采用电池供电当然无必要电源平滑滤波。但电池充电电路也有整流及滤波,故滤波电容器还是会存在。

  我们现在习用的滤波电容,正式的名称应是:铝箔乾式电解电容器。就我的观察,除加拿大Sonic Frontiers真空管前级,曾在高压稳压线路中选用PP塑料电容做滤波外,其它机种一概都是采用铝箔乾式电解电容;因此网友有必要对它多做了解。

  面对电源稳压线路中担任电源平滑滤波的电容器,你首先想到的会是什麽?─容量?耐压?电容器的封装外皮上一定有容量标示,那是指静电容量;也一定有耐压标示,那是指工作电压或额定电压。

  工作电压(working voltage)简称WV,为绝对安全值;若是surge voltage(简称SV或Vs),就是涌浪电压或崩溃电压;,超过这个电压值就保证此电容会被浪淹死─小心电容会爆!根据国际IEC 384-4规定,低於315V时,Vs=1.15×Vr,高於315V时,Vs=1.1×Vr。Vs是涌浪电压,Vr是额定电压(rated voltage)。

  电容器的电荷能量是以Q=CV来表示,Q是库伦,C是静电容量,V是电压;故当电压值不变时,加大静电容量就能增高电荷能量。请注意,电容器的容量单位应是F(farad),可是因计量太高造成数值偏低,故多改用μF,1F=一百万μF。国外也有用mF表示μF,其实mF不十分贴切,但机械式打字机上没有μ键,故用m代表micro。

  有了静电容量及工作耐压两个参数,若你正在选购电容,接下来你会考虑什麽?直觉上是价钱。嗯,这个参数很重要,而且数值愈低愈佳。也有人先想到品牌,并坚持日本货打死不用─还存著八年抗战情结?美国货也仅能排第二,瑞典或德国制造的才能排第一。嗯,这个参数也很重要。但既然谈到品牌,那就不能忽略系列型号;因为一个制造厂会生产许多不同系列的产品,系列不同,品质及价格就会不同。OK,我们先整理一下,有关电源平滑滤波电容器的参数已知有:静电容量、额定工作电压、涌浪崩溃电压、价格、品牌、型号系列。

  不应该只有小猫两三只,外型尺寸也应该很重要,因为与它相关的有重量及接脚型态,snap-in是插焊PC板式,screw是锁螺丝式。至於重量,同容量同耐压,但品牌不同的两个电容做比较,重量一定不同;而外型尺寸更与机箱规划有关。有些电容不是全圆型,有点像是多角型,Philips、BHC都有这种看起来似乎很高级的系列。现在我们再整理一下,加上重量、外型尺寸、接脚型态─已有九个参数。

  外皮颜色?这是谁提出来的?很妙。因白色、黑色、蓝色塑胶封装都有厂商在用,它有时也具有某些意义,例如日规黑底金字常代表高级for audio音响级电容。仅凭外观还能想到哪些?制造日期,9627就是1996年第27周出厂;近年来日制电容似乎逐渐有意省略制造日期的标示。但外皮颜色及文字印刷不直接与品质有关,故仅加上制造日期参数。还有,别忘了适用工作温度,因为 105度C比85度C更适用於真空管机。若机器要摆在南极,最好选耐负55度C的品种。

  容量误差也别遗漏,当采多颗并联,为求得单只特性均匀,误差当然是愈低愈佳。现在再加上工作温度及容量误差,咱们手上已有12个参数,对电容器应有三成以上了解。

  请别会错意,电容的工作温度不是指环境或表面温度─不管几度,封装塑胶外皮都是一样,它是指铝箔工作温度,所以装管机选用85度C品种也绝对OK,只要将电容器远离管仔就一定安全。

  可是真正有关电容器品质的几个重要参数,却都只存在原厂规格书中,完全不会显露在成品封装外皮上,而这些重要参数才是本文谈论的重点。

  散逸因数─损失角

  散逸因数dissipation factor(DF)存在於所有电容器中,有时DF值会以损失角tanδ表示。想想,损失角,既有损失,当然愈低愈好。塑料电容的损失角很低,但铝电解电容就相当高。DF值是高还是低,就同一品牌、同一系列的电容器来说,与温度、容量、电压、频率……都有关系;当容量相同时,耐压愈高的DF值就愈低。举实例做说明,同厂牌同系列的10000μF电容,耐压80V的DF值一定比耐压63V的低。所本刊选用滤波电容常会找较高耐压者,不是没有道理。此外温度愈高DF值愈高,频率愈高DF值也会愈高  。

但许多电容器制造厂,在规格书上常不注明散逸因数DF值,因为数值甚高很难看。以瑞典RIFA为例,其蓝色PHE-420系列是MKP塑料电容,它的DF值最低是0.00005/最高是0.0008。但白色顶级PEH169系列铝质电解电容,就未标示损失角规格。若真注明DF值,可能会是1.0000,小数点是在1的後面。

  漏…漏电流

  哇!漏电!最好没有。可是没办法,铝电解电容在工作时一定会产生漏电流。

  漏电流(leakage current)当然要低,它的计算公式大致是:I=K×CV。漏电流I的单位是μA,K是常数,例如是0.01或0.03,每家制造厂会选择不同的常数。但不论如何,电容器容量愈高,漏电流就愈大。如果你有容量愈大平滑效果愈好的想法,这个「漏电流」也请考虑在内。从计算式可得知额定电压愈高,漏电流也愈大,因此降低工作电压亦可降低漏电流。

  但降低电容器的漏电流并不容易,低漏电流low leakage current-LL系列价格高昂,我曾向国内厂商订制一批低漏电流LL系列电容,价格比许多进口电容还贵。漏电流规格,铝电解电容就比钽电解电容差许多,钽质电容也有乾式及湿式两种,不过它的容量及耐压都较低。

  除特别定制外,面对一般品,想要降低它的漏电流可设法提高Vs对Vr的比值。Vs是涌浪电压,其值当然比Vr额定电压高,但施加电压(真正的工作电压)还应该比Vr低,例如取Vr的90%;找高耐压品种可说是完全正确。

  等效串联电阻ESR

  一只电容器会因其构造而产生各种阻抗、感抗,比较重要的就是ESR等效串联电阻及ESL等效串联电感─这就是容抗的基础。电容器提供电容量,要电阻干嘛?故ESR及ESL也要求低…低;但low ESR/low ESL通常都是高级系列。

  ESR的高低,与电容器的容量、电压、频率及温度…都有关,当额定电压固定时,容量愈大 ESR愈低。有人习用将多颗小电容并接成一颗大电容以降低阻抗,其理论是电阻并联阻值降低。但若考虑电容接脚焊点的阻抗,以小并大,不见得一定会有收获。

  反过来说,当容量固定时,选用高WV额定电压的品种也能降低 ESR;故耐压高确实好处多多。频率的影响:低频时ESR高,高频时ESR低;当然,高温也会造成ESR的提升。

  串联等效电阻ESR的单位是mΩ,高级系列电容常是low ESR及low ESL。若比较低内阻及低漏电流两种特性,则低内阻容易达成,故标示low ESR的电容倒很常见。ESR与损失角有关联,ESR=tanδ/(ω×Cs),Cs是电容量。

  有时电容器规格上会有Z,它与ESR的意义不同,但Z的计算示与ESR有关,同时也考虑到容抗及感抗,是真正的内阻。刚才提到电容的ESR单位是mΩ,那是指大电容,若是220μF小容量电容,其ESR单位就不是mΩ而是Ω。何种电容器的ESR最低?答案只有一个:Sanyo的OS有机半导体电容!

  涟波电流Irac

  前面谈到的散逸因数DF-损失角tanδ、漏电流、ESR-串联等效电阻…等,其值都是愈低愈好,但现在要提的涟波电流ripple current却是愈高愈好。特别是现在都特别讲究後级扩大机要有大电流输出,电源平滑滤波电容器的涟波电流Irac(或Iac)就显得格外突出。

  涟波电流Irac的标示至少应有低频及高频工作时两种规格数字,低频大约是以120Hz做标准,高频大概是以 10KHz做标准,但不同制造厂商可能会有略微的差别。

  涟波电流与频率刚好成正比,因此低频时涟波电流也比较低。可是对我们音响迷来说,低频段的Irac值才是重要。所以在采购电容器时,涟波电流数字高低是极为重要的依据。在一般状况下,同品牌时,锁螺丝式电容的涟波电流通常比snap-in插PC板式来得高。

  曾经有一种说法:RIFA的10000μF相当於其它厂牌15000μF,因为大部份日制电容的涟波电流都不高,而RIFA又特别高,故好像可以一个当两个用。德国Siemens、英国BHC电容,在Irac这项特性上也常优於日制品。就笔者所知,Irac最大的电容,是Siemens SIKOREL系列电容为最高,6800μF/63V就高达20A!若是小容量电容,Irac最大的是Sanyo OS电容。

  就後级扩大机的动作来说,很多人会认定低频时吃电流。有个方法可以试:以电表直流电压-DCV最低档量任一只射极电阻压降,最好是指针电表,播放唱片,将前级音量转大,注意电表指针的摆动,你就会发现低频固然会吃电流,四把吉它连弹也会猛吃电流!什麽音乐最适合run-in後级扩大机?Holst的《行星组曲》第一曲MARS。

  现在你应该已经明了六成以上,或许你想问:有没有体型不大,漏电低、ESR低、tanδ低、误差低、价格低,但涟波电流高、适用温度范围高的铝电解电容?嗯…,没有!

  关於容量误差,近年来铝质电解电容颇有进步,以往是-20%~+40%,现在大多是+/-20%。但其容量常偏+而不是偏-,故10000μF测量起来有可能会接近12000μF。

  精确量取大容量电容器的静电容量,是我多年来一直想做的事。不要怀疑,这种测试仪器很难买到,美国曾制造过,可量至99999μF,并能同时显示DF值及 ESR值;而且电容量是100Hz、1KHz、10KHz三段(不是两段)频率测试的平均值。这种仪器国内市场曾出现过,小卖新台币十万元─只差漏电流的测试。

  额定工作电压的安全度,在我的标准是:至少理让15%。例如某电容的额定电压是50V,虽然涌浪电压可能高至63V,但我最高只会施加 42V电压。让电容器的额定电压具有较多的余裕,能降低内阻、降低漏电流、降低损失角、增加寿命,一举数得何乐不为?以前曾看过日制扩大机,±48V工作电压配上10000μF/50V滤波电容;短时间内当然不会烧坏,但时日长久,寿命有可能降低,那就得更换新品或另购新机。所以日制品常有「时间到了,该走了」的宿命,你也不能指责它是偷工减料,毕竟做生意总要图利,若一辈子只能卖你一次,如何赚钱?

  容量愈高哼声愈低?

  自己装,最讨厌的就是哼声除不掉。有人将滤波电容加大,哼声就没了。我是不十分相信,因扩大机的哼声常是因地回路不当引起,来自电容器微乎其微。但是理论上,容量愈高,电源平滑效果也就愈佳,所以大容量的做法,是许多设计者及DIY迷亦深信不疑。

  因此不少後级扩大机,特别是美国产品Krell、Mark Levinson,最爱采用大水塘─大电容;丹麦的Dynaudio,连前级扩大机都用到十数万μF之容量。至於AC & DC交直流,也比较倾向於「大容量」派,但尚适可而止。

  可是也有不少名厂走低容量路子,例如美国Amcron有台 250W×2专业後级扩大机,两声道合计500W,只用了2只8200μF小滤波电容器(好像是小了点)。瑞士Goldmund算是Hi-End品牌,产品送到各杂志社试听,没有一个评论员胆敢说它坏,它的大後级就是采用小电容。瑞士FM Acoustics更是贵到毙,一台立体声後级後级可换一部Benz车。它的220W×2专业後级,号称数十A电流输出,本人亲眼得见,全机只使用2只10000μF/100V滤波电容。

  大容量滤波与低容量滤波两种理论基本上是对立的,但却同时存在於音响圈。以低容量论点设计扩大机,也可以完全没有哼声,而且低频表现也不比「大水塘」机差。重点是什麽?Irac涟波电流。如果你如今还是满脑子的大容量,那你还不了解电解电容!

  给大家一个建议:组装後级若采用低容量滤波电容时,千万要配用高功率电源变压器。也就是「瘦了电容器、肥了变压器」,这可能就是扩大机好声的秘绝。以这几年详细之观察,後级扩大机若要好声,采用大功率电源变压器比采用大容量滤波电容有效多了。

  一颗大的?多颗小的?

  OK,有人放心不下,滤波电容坚持要大μF─那是找一个大的,还是用十来个小的并接?又有人说用小颗并,不但内阻可以降低,反应速度也会也快,透明度及解析度都比较好。

  Mark Levinson及Krell的後级不是以小并大,但有谁认为它反应速度慢、不透明有雾?面对此问题,我自己都长期陷入迷阵中。就机箱规划来说,用多颗小电容并联似乎比较理想,而且进货量大价格也便宜,甚至前级、後级、综合机,都可采用同一种电容。

  进口机与国产机的命运有些不同,当消费者面对数十万元进口机采用多颗小电容时,他会自我解释:这个很有道理;但面对国产品时,他可能会有另一套恶毒的说法:偷工减料!

  就音质表现,大水塘or小水塘、一颗大的or多颗小的,应该没有绝对关系。邓小平说得好:管它黑猫、白猫,会捉老鼠的就是好猫。

  制造厂牌也关乎品质特性,前述有人终其一生不用日制品。美国原本有两大电容器品牌Mallory及Sprague,现在 Sprague已成绝响,因为它被日本Nippon Chemi-con收购,且公司名称注册United Chemi-Con/简称UCC。但只要是仍在美国制造,外皮印有made in USA,商标更改与制造品质应无关联。

  不过外界已有耳语:UCC比Sprague差,可能性如何?日本商社一旦接手,行销政策自然会大幅改变,为了提高出货量必得降低售价;但假格下滑也会导致品质下滑。询问本地代理商瑞普公司,UCC电容销售量比Sprague低,显示国内厂商有排斥UCC的反映。若比较UCC及Sprague的规格特性,果然是一付Japanese样─体型大为缩水,原本40mm×80mm的改成40mm×50mm,价格可能较低廉,但ESR增加、Irac减小─怎不令人掷笔三叹?

  你对日制品有疑虑?没办法,非但美国如此,德国也需要日本资金进入来个德日合作,Siemens就和松下Matsusita共同生产S+M电容器。这是未来趋势,几乎不可避免。RIFA也早就被EVOX吃下,EVOX是大集团,到处设厂,本刊SigEnd单端前级有用到1μF电容,就是EVOX品牌,虽然自美国进口,但一付台制品模样。

  储存及工作寿命

  比起电阻、IC、电晶体、塑料电容这些半永久性元件,铝电解电容的寿命就值得重视。一是储存年限,自然与寿命有关,10~20年应无问题。存放过久的电容不宜立刻使用,利用power supply先将它aging(活化);夹上端子,缓慢调整power supply电压,由低至高,最高可调至此电容的额定电压。

  工作寿命就很难说得明白,所谓长寿命LL-long life电容,通常是表示涟波电流Irac稳定。前面曾谈到电容的Irac与工作温度及频率都有关,例如同是10KHz,40度C时是15A,85度C时是9A;15A/9A=1.67。此数字就是电容的寿命因数(本人临时想出来的),数字愈高寿命愈低,数字愈接近1寿命愈长。

  如果没记错,1.93表示10万小时,1.85表示20万小时,故1.67至少50万小时!但电容器的主要功用是充、放电特性,因此不宜经常快速充、放电。有两个方法可有效延长电容器寿命:一是减少开机、关机次数,二是设法降低开机时的瞬间充电电流─你听懂了吗?本刊也注意到此问题,故多年来都是这样做。

  即令是如此,若问:到底是哪一种电容的音质较好?这也实在难以回答。基本上,不同品牌、系列的电容,它的声音表现自然也是不同。我个人不会「日制品打死不用」,只要处理得当,日制品也不输欧美货。多年前曾用过ELNA高级Cerafine音响级电容,它的ESR虽然低,但Irac也不高,装在amp.上,低频很厚实,但雾气较重,不够透明。可是并上speed-up小电容後,就豁然开朗。

  故实际装配时,记得一定要在主滤波电容上加并speed-up小电容,此举「至少」会改善高频响应。数值是多少?最好是一大一小,大的1μF、小的0.1μF,MKP是最低要求。

  有时并上小电容会发现助益不大,这可能是小电容未选对。RIFA的电解及塑料电容,若想加并speed-up,奉劝你不要找WIMA,建议各位试试MIT的PPFX-S锡箔或RTX系列0.1μF。写这篇文章的同时,也留意各杂志的广告,美国Krell及加拿大Class'e Audio的Hi-End後级新机种竟然都采用日本Nichicon电容做主电源平滑滤波!但杂志评论员有谁敢说它差?!

  前级扩大机吃不了数百mA电流,故滤波电容较易选择。高瓦数、高输出电流扩大机就很难伺候,此时滤波电容的Irac特性就要考虑在内。

  对於滤波用电解电容,有几点值得网友注意:一、大致上来说,日制品的Irac比欧美品低;二、低漏电流比低ESR更重要;三、大滤波电容宜并接小电容;四、尽量选高耐压电容;五、最顶级的电容,容量及耐压都不高,故数百瓦的大power通常声音粗糙,不是没有道理。

  笔者不建议哪种电容最好,因为只要用得恰当,每种电容都可发出好声。至於刻意强调电容、电阻、焊锡、保险丝非xxx品牌不用的人,绝对是不懂线路结构的外行人!

  关於铝质电解电容的构造

  电容器依其元件构造大致可分成:一、卷绕型,二、积层型,三、电解型。而电解型又分铝质及钽质两类,铝质再分成液态电解质及固态电解质。若说液态电解质是铝箔湿式、固态电解质是铝箔乾式,那就错了,因铝箔乾式及铝箔湿式都是液态电解质电容。

  铝质电解电容是以经过蚀刻的高纯度铝箔做为阳极,以其表面经阳极氧化处理之化成薄膜做为电介质,再以浸有电解液的薄纸或布做阴极。由於电解液是用吸浸式,故称铝箔乾式电解电容。

  何谓铝箔湿式?在电容器内直接加电解液─例如硼酸胺+乙二醇混合液,这种用手电容摇一摇还会发出流水声,瑞典RIFA的PEH169系列就是这种电容。

  即使是欧洲名厂,做为阳极的铝箔也非自行生产,而是统一由某公司供应,就好像瑞士表厂甚多,但只有少数几家会做油心。大约10年前意大利某公司无法正常供应阳极铝箔时,全球各名厂如Mallory/RIFA/Sprague或Rubycon/Philips…就只得拖延交货脱时间,没原料怎麽生产交货?至於吸浸电解液的纸,也绝非在一般文具店即可购得,最大供应商是在马来西亚。
回复

使用道具 举报

187#
 楼主| 发表于 2013-8-20 15:25:49 | 只看该作者
电子管功放的调整

 电子管功放(胆机)的线路比晶体管机简单,容易制作成功,并且有较好的音乐重播效果,特别是在感情表达方面更是专长,所以胆机复起以后很受发烧友的青睐。胆机最重要的特点就是胆味,阁下所焊的胆机是否也具有温暖、醇厚、顺滑、甜美的胆味呢?如果没有,声底和晶体管机差不多,或比晶体管机还硬、还干涩,或自制的胆前级、缓冲器接入放音系统中,放音系统音色的改变并不像媒体所说的那样“立杆见影”时,就应该测量一下各管的工作点,是否工作在最佳状态上,否则就要进行认真、仔细地调整。只有各电子管工作在最佳工作状态,才能发挥线路和每只胆管的魅力,达到满意的放音效果。
  工作点未调好的胆机,除了音色表现不佳以外,还有音量轻和失真的现象出现。一台放大器音质的好坏,影响的因素虽然很多,但最终还是决定于制作的水平。发烧友在制作器材时,一般是根据手中积攒的胆管和元件,再选择优秀的线路或按照名机的线路按图索骥,进行焊接,元件的规格、数值虽然与线路图上的要求相差不大,但由于元件的排位,走线的长短、焊接的质量,或其它方面的差异,如B+电压的高低等原因,都会影响到放音的表现,所以焊出的胆机,不一定是胆味浓浓的。没有胆味不要紧,只要通过适当、合理地调整、校验,使放大器各级胆管工作在最佳状态,便能达到放音的要求。
  胆机调整工作的内容,除了将噪声降低至可以接受的程度和更换输入、输出耦合电容的牌号或容量,以改变音色以外,最重要的是调整屏压、屏流和栅负压,使胆管工作在合适的工作点上,使放音系统放出好声,而这一点正是一些文章中谈得较少或用很简单的二句描述带过去了,要不就是“不需任何调整”就可以工作。如果胆管没有进入工作状态,再换名牌电容,胆味也不会出来。
  调整胆机时,要根据电子管手册上提供的数据,作为电路的依据,无电子管手册时,要尊重线路图中所给的参数数值或附加的胆管资料进行。三极管的工作点由屏压和栅负压决定,屏压确定后可调整栅负压来调工作点,束射管或五极管的屏压升高到一定程度后,帘栅压的变压会对工作点有较大的影响,因此可调整帘栅压和栅负压来选定工作点。
  降低胆机噪音和更换耦合电容调整音色的方法,一些文章已有介绍,本文不再重复,这里就调整胆管工作点的方法谈一谈体会。
  一、 栅负压电路
  调整胆管的工作点时,经常会涉及到栅负压,因此首先将栅负压电路说一下。电子管是电压控制元件,三大主要电极(灯丝、栅极和屏极)是要供给适当电压的,供给灯丝的称甲电,供给栅极的称丙电,供给屏极的称乙电。栅极电压一般是接的负压,习惯上称“栅负压”或“栅偏压”。为了使胆管工作稳定,栅负压必须用直流电来供给。按胆管的工作类别不同,栅负压的供给有二种方法:一种是利用电子管屏流(或屏流+帘栅流)流经阴极电阻所产生的电压降,使栅极获得负压,则称自给式栅负压,一般用在屏流较稳定的甲类放大电路上。另一种是在电源部分设一套负压整流电路,供给栅负压,称作固定栅负压,主要用于屏极电流变化大的甲乙2类或乙类功率放大级。使用自给式栅负压,胆管比较安全,采用固定式栅负压时,当负压整流电路发生故障,胆管失去栅负压后,屏流会上升过高而烧坏胆管,因此没有自给式栅负压工作可靠。
  自给式栅负压产生的过程如下:图1表示电路中电流的流经过程,当电子管工作时,屏极和帘栅极吸收电子,电流从电源高压的负极经阴极电阻RK、屏极、输出变压器初级线圈和帘栅极的电流一起到高压的正极,成为一个负荷回路,当电流流过RK时,RK就产生一个电压降,RK两端的电压,在地线的一端为负极,在阴极的一端为正极。这样,阴极和地线间就有了RK所产生的电位差,栅极电阻R1将栅极和地线连接,所以栅极和阴极间也就有了RK所产生的电位差。由于不同的电子管所需要的栅负压不同,阴极电阻的阻值也不同,如6V6的阴极电阻300Ω,而6L6的阴极电阻170Ω。阴极电阻的阻值可用欧姆定律求得:阴极电阻=栅负压/放大管电流(屏极电流+帘栅极电流)。当栅极输入信号时,屏流立即被控制而波动,阴极电阻上的电流也就是波动的,所产生的电位差也是波动的,阴极电阻上电压波动的相位恰巧和输入的信号相反,因而减弱了输入信号,这种情况通常称本级电流负反馈,这种作用减低了本级放大增益。引起阴极上电压波动成份是音频交流成份,所以一般在阴极电阻上并联一只大容量的电解电容,将交流成分旁路,阴极电阻的直流电压就比较稳定了。
  还有一种产生栅负压的方式,称接触式栅负压,产生的过程见图2,这种栅负压是电子管自己产生的,当电子从阴极奔向屏极时,经过栅极,如果栅极上没有任何负压时,电子经过栅极就没受到拒斥,则在奔向屏极的路上就不时碰到栅极上,碰到栅极上的电子就由栅极电阻R回到阴极,电子流动方向是从栅极到阴极,所以电子流过R时产生电压降,栅极是负端,阴极是正端,因为碰触到栅极的电子很少,造成的电流还不到1μA,虽然R的阻值很大,以10MΩ计算,但所产生的电压不过1V左右。这种栅负压供给的方式见得较少,只能用在输入端小信号放大电路,输入信号小于1V的放大级,如拾音器输出只有几mV,用此栅负压电路很合适。
  二、 电压放大级的调整
  电压放大级担负全机的主要放大任务,不能有失真,所以要求工作在甲类状态。甲类状态时,它的工作点在栅压-屏流特性曲线的线性段的中间,此时,栅负压是放大管最大栅负压的一半,工作电流应在放大管最大屏流的30%~60%之间为宜,不应过小。
  调整方法很简单,只要调整阴极电阻的阻值即可,首先将电流表(最大量程稍大于该管最大屏极电流,如6SN7屏流为8mA,可用10mA的电流表)串在阴极回路中,如图3a V1的阴极回路中所示,电流表正极接阴极电阻,负极接底盘,若阴极电阻无旁路电容,为了避免电流表和接线对该级工作状态不发生影响,最好在电流表两端并联一只100μ/50V的电解电容,图中的虚线CA。若阴极电阻RK有旁路电容,电流表的接法见图3b,也可以将电流表串入屏极电路中。然后改变RK的阻值或V1的屏压,使V1的工作点达到最佳状态。也可以用测量阴极电阻RK两端电压的方法,再用欧姆定律(A=V/R)算出电流。
  不同的放大管所需要的工作电流不一样,如6SN7可调到3~4mA,胆管屏流增大,声音温暖、丰厚,但噪声也会增大,噪声是电压放大级的重要指标,噪音不能大,所以在调整时一定要噪声和音色兼顾。具体到某一台胆机上,屏极电流调到多少为宜,也可以通过边调边听音来找到一个音色最佳的工作点。
  当屏极负载电阻R2的阻值用得比较高时,失真小,但这时必须整流输出有较高的电压才行,有条件者,可以将RK和R2用不同的阻值组成几组试听,找出噪音小,声音醇厚、丰满而通透度又好的一组组合换上。
  栅负压应大于输入信号电压的摆动幅度,如用6SN7作电压放大,输入信号来自CD机,CD机输出电压为0~2V,则6SN7的栅负压应调到-3V以上。如12AX7、6N3管的栅负压设计为-2V,若输入信号电压较高,可以在输入端设置信号衰减分压电阻,见图4,使输入信号电压适当降低,保持不失真放大。
  12AX7是音乐化的胆管,一般都喜欢用它制作前级放大器,使整个系统的音乐感更好,在调整工作点时要注意,因为12AX7的屏流很低,最大才12mA。
  三、 倒相级的调整
  调整倒相级的目的是要输出端的上、下二个输出信号对称相等,以减小失真。
  图5是屏-阴分负载式倒相电路,此电路是公认的好声电路,国内外有相当多的名机采用此种电路,电路中V的屏极与阴极输出电压相位相反,而且流过R2、RK的音频电流相等,所以只要R2和RK相等,则屏极和阴极的输出电压大小相等,因而得到相位相反、振幅相等的输出信号,因此一般线路图中都要求此两只电阻要数值相同并配对使用,但实际上由于输出阻抗并不相同,使负载上的输出电压也不是相等的,所以用同一阻值的负载不一定是最佳状态,因此要采用略有差别的阻值,无仪器测量时,可以通过试听是否有明显的失真来判断。本刊1997年举办胆机制作大奖赛时,采用的电路中RK的阻值取43k,稍大于R2(36k),可以得到对称的输出,减小失真。
  图6为阴极耦合倒相电路,又称长尾式倒相电路,这个电路的频率特性非常平坦,也是很多名机采用的倒相电路,一般要求两个屏极负载电阻(R1、R2)也要相同,如果测得上、下两个输出电压振幅差较大,或放大器有失真,经调整各管的工作点,失真未能彻底消除时,可试将RK的阻值加大5%~10%左右,可能失真就会小些。
  四、 功率放大级的调整
  图3a是甲类功率放大级,功放管的工作点是在栅压与屏流特性曲线的直线部分,栅极的输入信号的摆动不超过负压范围值,超过时将发生失真。甲类功率放大的特点是工作电流在强信号或弱信号输入时,保持不变,工作稳定而失真低,利用这一特性可检验功放级的工作点是否合适。检验时,将电流表串在功放管的屏极回路中,见图3a,当栅极有信号输入时,如果功放管的屏流升高,则说明栅极负压过低,若屏流降低,则表明栅负压过高,必须调整到屏流变化最小为止。屏流的大小要适当,屏流大时,音质听感好,失真小些,屏流小时,对胆管的寿命有利,可根据需要来调整。
  调整时要注意,不要超过功放管的最大屏耗,甲类工作状态时,功放管的屏压×屏流等于它的静态屏耗,超过后屏极会发红,时间一长就会烧坏功放管,一般要求胆管用到极限值的参数不得多于一个,更不能超过极限参数,屏流一般调到最大屏流的70%~80%为宜。
  调整方法是调整阴极电阻R5的阻值,R5的阻值是根据放大管的栅负压、屏流和帘栅极电流的总和而定的,图3a中6V6的屏流可调到30mA左右(最大屏流为45mA),阴极电压10V,屏压280~300V。当屏压较高时(300V以上),帘栅压的变化对屏流的影响较大,可适当的调整帘栅压和栅负压选取工作点,有条件者可以将帘栅压采用稳压电路,使功放管工作更稳定。
  推挽放大级的调整是使两只推挽功放管要平衡,两只功放管的栅负压和屏流要相等,以图7为例,栅负压不相等时,调整栅负压电位器RP,屏流不一样时,将屏流大的功放管阴极电阻加大或再串上一只电阻,如图7中的RK,如果屏极电流相差较大,说明功放管不配对,应换一只功放管。有的线路图上,功放管阴极接一只10Ω电阻,它是为了检查功放管的工作状态的,调整时只要测量此电阻的电压降,就可以知道屏流的增减。
  调整屏流时,还应该注意B+电压的变化,如果屏流较大时,B+电压降低很多,则说明电源部分的裕量不够或电源内阻较大,滤波电阻阻值大,扼流圈的线径细或电感量大,可减小滤波电阻阻值或将去功放管屏极的B+接线,改接到滤波电路的输入端,这时虽然B+的纹波较大,但对整机的交流声影响不大,仍可以在能够接受的水平。
  五、 负反馈的调整
  线路有了负反馈后,会减少谐波失真,但会影响到瞬态表现变差,因此负反馈量不宜过大,一般有6dB左右为宜,调整方法是改变负反馈电阻的数值,如图3a中R6,图7中的Ra,反馈量的大小根据放音效果如音场、定位、人声的甜美、音乐感等来决定,以耳听满意为准。如果负反馈电路刚一接通,放大器便发生叫声,这是反馈的极性接反了,只要将负反馈的连接线改接在输出变压器的另一端上,此端改为接地即可。有的负反馈回路并联一只小电容,这只电容如果数值选择不当,可能会引起失真或自激,因此,发现此现象时干脆去掉它。
  经过上述方法的调整,各电子管已经进入最佳的工作状态,再放熟悉的唱片,放音效果一定会不同,胆味会增加不少。


回复

使用道具 举报

188#
 楼主| 发表于 2013-8-20 15:26:07 | 只看该作者
电子管功放的调整

 电子管功放(胆机)的线路比晶体管机简单,容易制作成功,并且有较好的音乐重播效果,特别是在感情表达方面更是专长,所以胆机复起以后很受发烧友的青睐。胆机最重要的特点就是胆味,阁下所焊的胆机是否也具有温暖、醇厚、顺滑、甜美的胆味呢?如果没有,声底和晶体管机差不多,或比晶体管机还硬、还干涩,或自制的胆前级、缓冲器接入放音系统中,放音系统音色的改变并不像媒体所说的那样“立杆见影”时,就应该测量一下各管的工作点,是否工作在最佳状态上,否则就要进行认真、仔细地调整。只有各电子管工作在最佳工作状态,才能发挥线路和每只胆管的魅力,达到满意的放音效果。
  工作点未调好的胆机,除了音色表现不佳以外,还有音量轻和失真的现象出现。一台放大器音质的好坏,影响的因素虽然很多,但最终还是决定于制作的水平。发烧友在制作器材时,一般是根据手中积攒的胆管和元件,再选择优秀的线路或按照名机的线路按图索骥,进行焊接,元件的规格、数值虽然与线路图上的要求相差不大,但由于元件的排位,走线的长短、焊接的质量,或其它方面的差异,如B+电压的高低等原因,都会影响到放音的表现,所以焊出的胆机,不一定是胆味浓浓的。没有胆味不要紧,只要通过适当、合理地调整、校验,使放大器各级胆管工作在最佳状态,便能达到放音的要求。
  胆机调整工作的内容,除了将噪声降低至可以接受的程度和更换输入、输出耦合电容的牌号或容量,以改变音色以外,最重要的是调整屏压、屏流和栅负压,使胆管工作在合适的工作点上,使放音系统放出好声,而这一点正是一些文章中谈得较少或用很简单的二句描述带过去了,要不就是“不需任何调整”就可以工作。如果胆管没有进入工作状态,再换名牌电容,胆味也不会出来。
  调整胆机时,要根据电子管手册上提供的数据,作为电路的依据,无电子管手册时,要尊重线路图中所给的参数数值或附加的胆管资料进行。三极管的工作点由屏压和栅负压决定,屏压确定后可调整栅负压来调工作点,束射管或五极管的屏压升高到一定程度后,帘栅压的变压会对工作点有较大的影响,因此可调整帘栅压和栅负压来选定工作点。
  降低胆机噪音和更换耦合电容调整音色的方法,一些文章已有介绍,本文不再重复,这里就调整胆管工作点的方法谈一谈体会。
  一、 栅负压电路
  调整胆管的工作点时,经常会涉及到栅负压,因此首先将栅负压电路说一下。电子管是电压控制元件,三大主要电极(灯丝、栅极和屏极)是要供给适当电压的,供给灯丝的称甲电,供给栅极的称丙电,供给屏极的称乙电。栅极电压一般是接的负压,习惯上称“栅负压”或“栅偏压”。为了使胆管工作稳定,栅负压必须用直流电来供给。按胆管的工作类别不同,栅负压的供给有二种方法:一种是利用电子管屏流(或屏流+帘栅流)流经阴极电阻所产生的电压降,使栅极获得负压,则称自给式栅负压,一般用在屏流较稳定的甲类放大电路上。另一种是在电源部分设一套负压整流电路,供给栅负压,称作固定栅负压,主要用于屏极电流变化大的甲乙2类或乙类功率放大级。使用自给式栅负压,胆管比较安全,采用固定式栅负压时,当负压整流电路发生故障,胆管失去栅负压后,屏流会上升过高而烧坏胆管,因此没有自给式栅负压工作可靠。
  自给式栅负压产生的过程如下:图1表示电路中电流的流经过程,当电子管工作时,屏极和帘栅极吸收电子,电流从电源高压的负极经阴极电阻RK、屏极、输出变压器初级线圈和帘栅极的电流一起到高压的正极,成为一个负荷回路,当电流流过RK时,RK就产生一个电压降,RK两端的电压,在地线的一端为负极,在阴极的一端为正极。这样,阴极和地线间就有了RK所产生的电位差,栅极电阻R1将栅极和地线连接,所以栅极和阴极间也就有了RK所产生的电位差。由于不同的电子管所需要的栅负压不同,阴极电阻的阻值也不同,如6V6的阴极电阻300Ω,而6L6的阴极电阻170Ω。阴极电阻的阻值可用欧姆定律求得:阴极电阻=栅负压/放大管电流(屏极电流+帘栅极电流)。当栅极输入信号时,屏流立即被控制而波动,阴极电阻上的电流也就是波动的,所产生的电位差也是波动的,阴极电阻上电压波动的相位恰巧和输入的信号相反,因而减弱了输入信号,这种情况通常称本级电流负反馈,这种作用减低了本级放大增益。引起阴极上电压波动成份是音频交流成份,所以一般在阴极电阻上并联一只大容量的电解电容,将交流成分旁路,阴极电阻的直流电压就比较稳定了。
  还有一种产生栅负压的方式,称接触式栅负压,产生的过程见图2,这种栅负压是电子管自己产生的,当电子从阴极奔向屏极时,经过栅极,如果栅极上没有任何负压时,电子经过栅极就没受到拒斥,则在奔向屏极的路上就不时碰到栅极上,碰到栅极上的电子就由栅极电阻R回到阴极,电子流动方向是从栅极到阴极,所以电子流过R时产生电压降,栅极是负端,阴极是正端,因为碰触到栅极的电子很少,造成的电流还不到1μA,虽然R的阻值很大,以10MΩ计算,但所产生的电压不过1V左右。这种栅负压供给的方式见得较少,只能用在输入端小信号放大电路,输入信号小于1V的放大级,如拾音器输出只有几mV,用此栅负压电路很合适。
  二、 电压放大级的调整
  电压放大级担负全机的主要放大任务,不能有失真,所以要求工作在甲类状态。甲类状态时,它的工作点在栅压-屏流特性曲线的线性段的中间,此时,栅负压是放大管最大栅负压的一半,工作电流应在放大管最大屏流的30%~60%之间为宜,不应过小。
  调整方法很简单,只要调整阴极电阻的阻值即可,首先将电流表(最大量程稍大于该管最大屏极电流,如6SN7屏流为8mA,可用10mA的电流表)串在阴极回路中,如图3a V1的阴极回路中所示,电流表正极接阴极电阻,负极接底盘,若阴极电阻无旁路电容,为了避免电流表和接线对该级工作状态不发生影响,最好在电流表两端并联一只100μ/50V的电解电容,图中的虚线CA。若阴极电阻RK有旁路电容,电流表的接法见图3b,也可以将电流表串入屏极电路中。然后改变RK的阻值或V1的屏压,使V1的工作点达到最佳状态。也可以用测量阴极电阻RK两端电压的方法,再用欧姆定律(A=V/R)算出电流。
  不同的放大管所需要的工作电流不一样,如6SN7可调到3~4mA,胆管屏流增大,声音温暖、丰厚,但噪声也会增大,噪声是电压放大级的重要指标,噪音不能大,所以在调整时一定要噪声和音色兼顾。具体到某一台胆机上,屏极电流调到多少为宜,也可以通过边调边听音来找到一个音色最佳的工作点。
  当屏极负载电阻R2的阻值用得比较高时,失真小,但这时必须整流输出有较高的电压才行,有条件者,可以将RK和R2用不同的阻值组成几组试听,找出噪音小,声音醇厚、丰满而通透度又好的一组组合换上。
  栅负压应大于输入信号电压的摆动幅度,如用6SN7作电压放大,输入信号来自CD机,CD机输出电压为0~2V,则6SN7的栅负压应调到-3V以上。如12AX7、6N3管的栅负压设计为-2V,若输入信号电压较高,可以在输入端设置信号衰减分压电阻,见图4,使输入信号电压适当降低,保持不失真放大。
  12AX7是音乐化的胆管,一般都喜欢用它制作前级放大器,使整个系统的音乐感更好,在调整工作点时要注意,因为12AX7的屏流很低,最大才12mA。
  三、 倒相级的调整
  调整倒相级的目的是要输出端的上、下二个输出信号对称相等,以减小失真。
  图5是屏-阴分负载式倒相电路,此电路是公认的好声电路,国内外有相当多的名机采用此种电路,电路中V的屏极与阴极输出电压相位相反,而且流过R2、RK的音频电流相等,所以只要R2和RK相等,则屏极和阴极的输出电压大小相等,因而得到相位相反、振幅相等的输出信号,因此一般线路图中都要求此两只电阻要数值相同并配对使用,但实际上由于输出阻抗并不相同,使负载上的输出电压也不是相等的,所以用同一阻值的负载不一定是最佳状态,因此要采用略有差别的阻值,无仪器测量时,可以通过试听是否有明显的失真来判断。本刊1997年举办胆机制作大奖赛时,采用的电路中RK的阻值取43k,稍大于R2(36k),可以得到对称的输出,减小失真。
  图6为阴极耦合倒相电路,又称长尾式倒相电路,这个电路的频率特性非常平坦,也是很多名机采用的倒相电路,一般要求两个屏极负载电阻(R1、R2)也要相同,如果测得上、下两个输出电压振幅差较大,或放大器有失真,经调整各管的工作点,失真未能彻底消除时,可试将RK的阻值加大5%~10%左右,可能失真就会小些。
  四、 功率放大级的调整
  图3a是甲类功率放大级,功放管的工作点是在栅压与屏流特性曲线的直线部分,栅极的输入信号的摆动不超过负压范围值,超过时将发生失真。甲类功率放大的特点是工作电流在强信号或弱信号输入时,保持不变,工作稳定而失真低,利用这一特性可检验功放级的工作点是否合适。检验时,将电流表串在功放管的屏极回路中,见图3a,当栅极有信号输入时,如果功放管的屏流升高,则说明栅极负压过低,若屏流降低,则表明栅负压过高,必须调整到屏流变化最小为止。屏流的大小要适当,屏流大时,音质听感好,失真小些,屏流小时,对胆管的寿命有利,可根据需要来调整。
  调整时要注意,不要超过功放管的最大屏耗,甲类工作状态时,功放管的屏压×屏流等于它的静态屏耗,超过后屏极会发红,时间一长就会烧坏功放管,一般要求胆管用到极限值的参数不得多于一个,更不能超过极限参数,屏流一般调到最大屏流的70%~80%为宜。
  调整方法是调整阴极电阻R5的阻值,R5的阻值是根据放大管的栅负压、屏流和帘栅极电流的总和而定的,图3a中6V6的屏流可调到30mA左右(最大屏流为45mA),阴极电压10V,屏压280~300V。当屏压较高时(300V以上),帘栅压的变化对屏流的影响较大,可适当的调整帘栅压和栅负压选取工作点,有条件者可以将帘栅压采用稳压电路,使功放管工作更稳定。
  推挽放大级的调整是使两只推挽功放管要平衡,两只功放管的栅负压和屏流要相等,以图7为例,栅负压不相等时,调整栅负压电位器RP,屏流不一样时,将屏流大的功放管阴极电阻加大或再串上一只电阻,如图7中的RK,如果屏极电流相差较大,说明功放管不配对,应换一只功放管。有的线路图上,功放管阴极接一只10Ω电阻,它是为了检查功放管的工作状态的,调整时只要测量此电阻的电压降,就可以知道屏流的增减。
  调整屏流时,还应该注意B+电压的变化,如果屏流较大时,B+电压降低很多,则说明电源部分的裕量不够或电源内阻较大,滤波电阻阻值大,扼流圈的线径细或电感量大,可减小滤波电阻阻值或将去功放管屏极的B+接线,改接到滤波电路的输入端,这时虽然B+的纹波较大,但对整机的交流声影响不大,仍可以在能够接受的水平。
  五、 负反馈的调整
  线路有了负反馈后,会减少谐波失真,但会影响到瞬态表现变差,因此负反馈量不宜过大,一般有6dB左右为宜,调整方法是改变负反馈电阻的数值,如图3a中R6,图7中的Ra,反馈量的大小根据放音效果如音场、定位、人声的甜美、音乐感等来决定,以耳听满意为准。如果负反馈电路刚一接通,放大器便发生叫声,这是反馈的极性接反了,只要将负反馈的连接线改接在输出变压器的另一端上,此端改为接地即可。有的负反馈回路并联一只小电容,这只电容如果数值选择不当,可能会引起失真或自激,因此,发现此现象时干脆去掉它。
  经过上述方法的调整,各电子管已经进入最佳的工作状态,再放熟悉的唱片,放音效果一定会不同,胆味会增加不少。


回复

使用道具 举报

189#
 楼主| 发表于 2013-8-20 15:26:35 | 只看该作者
后级驱动能力与功率及电源供应关系<转贴>
晶体后级驱动喇叭的能力至少与以下几个因素有关:一、电源供应。二、输出功率。三、阻尼因子。四、抵抗反电动势的能力。或许,我们如果从喇叭这个方向来看后级,可能会使问题更清楚些。从喇叭的方面要怎么看呢?喇叭的驱动难易程度与一、阻抗曲线的走势。二、灵敏度。三、相位角的偏移情况。四、反电动势的强弱。

先说阻抗曲线,在喇叭说明书中我们经常看到喇叭阻抗8欧姆或4欧姆的记载。其实这个8或4欧姆的数字只是概略性的数字而已,因为没有一支喇叭的阻抗曲线能够从20Hz到20KHz之间都维持在8欧姆的位置上,至少它会随着频率的变动而改变阻抗数值。有时会高到几十欧姆,有时会低到1欧姆。喇叭阻抗曲线的变化与后级有什么关系呢?不要忘了,后级的功率输出要由喇叭的负载阻抗来决定,假若一部后级宣称在8欧姆时有100瓦输出,那么在16欧姆时可能只剩下50瓦输出,在32欧姆下更只有25瓦输出。反之,它在4欧姆时输出可能会大到200瓦,2欧姆负载时更可能大到400瓦。

当喇叭阻抗变高时,后级输出只是变小而已。然而,当喇叭阻抗变低时,后级输出就不仅是变大那么简单了。当后级输出变大时,我们首先会遇上的问题就是电源供应能够提供那么大的输出功率所需吗?如果不能,在4欧姆时就无法达到200瓦输出,更别提2欧姆时会有400瓦输出。假若电源供应有那么大的余裕,可以充足供应400瓦的功率所需,我们还要考虑另外一个问题:功率晶体能够承受那么大的电压或电流吗?通常,厂家不太可能会在100瓦的后级上面用上400瓦后级所需的功率晶体,因为这样一来,成本会大幅提高。

喇叭的灵敏度表面上看起来很直接,90dB灵敏度可能比86dB灵敏度来得好推。问题是,灵敏度的测试只对整支喇叭所能发出的音压做测试,而非对每支单体所能发出的音压做单独测试。所以,当100瓦的功率同时输入到喇叭的高、中、低音单体时(假设喇叭为三音路),首先遇上分音器,分音器在吃掉一些功率之后,再把剩下的功率输送到三个单体上面。此时三个单体会因为本身效率的不同、阻抗曲线的不同而对输入的功率产生不同的反应。换句话说,高、中、低音单体所发出的音量会不一样大。通常,我们如果发现低频量感很少,就会说这对喇叭很难推,不管它在说明书上记载的效率有多高,它就是很难推。而这种难推的喇叭往往又伴随着另外一个问题:高音单体很好推。在低音单体难推、高音单体好推的情况之下,您能想象会发现什么现象吗?那就是很多人都曾经尝过的苦头:低频不够饱满、高频却刺耳。

相位角的偏移其实就是喇叭容抗、感抗、阻抗趋前或落后的复杂变化。由于喇叭不仅与电子反应相关(被动分音器),也与机械反应(单体结构)相关,更与空气容积相关,它们相互之间会产生复杂的反应。这也就是说,后级无时不刻都在与复杂的喇叭容抗、阻抗、感抗搏斗,这也是喇叭难推的原因之一。

最后说到反电动势,我们可以把喇叭单体总成,看成一个有线圈、有磁铁的发电机,当扩大机的电流输入,驱动振膜进行前后活塞运动时,喇叭单体会产生电流,这股电流会回输到后级扩大机里,我们称此现象为反电动势。反电动势越大,喇叭就越难推。晶体后级由于直接与喇叭耦合,比较易受反电动势影响。而真空管后级由于有输出变压器耦合喇叭,受反电动势的影响较小。

写到这里,我们可以回头来看DR-3与DR-9的问题。从您所提供的数据中,我们可以知道DR-3与DR-9的电源供应能力在储存电能的电容上相差10,000μFD,不过DR-9的电源变压器稍大些,所以二者实际上的供电能力没差多少,我猜真正有差别的应该是功率晶体。所以,您可以这样认为:DR-3虽然只有纯A类25瓦,但是它的电源供应能力很足,在遇上难缠的喇叭时,能够比一般25瓦后级发挥更强的喇叭驱动力。反之,我们也可以这么看DR-9:在与DR-3相近的电源供应能力下,它虽然可以在8欧姆负载下输出100瓦,不过在4欧姆或2欧姆负载之下能否输出足够的200瓦或400瓦而不失真就有待观察了。

或许这个例子可以告诉我们,光看说明书上的功率输出数字并不代表太多的意义,更重要的是后级实际驱动喇叭时的表现,这也就是我们常说的:要以耳朵验收的一个实证。
回复

使用道具 举报

190#
 楼主| 发表于 2013-8-20 15:27:05 | 只看该作者
频谱与听感
各种不同频段有各自的音色特点。
高音频段HF:6∽20KHz
这个频段的声音幅度影响音色的表现力。如果这个频段的泛音幅度比较丰满,那么音色的个性表现良好,音色的解析能力 强,音色的彩色比较鲜明。这个频段在声音的成分中幅度不是很大,也就是说,强度不是很大,但是它对音色的影响很大,也就是说,强度不是很大,但是它对音色的影响奶大,所以说它很宝贵、很重要比如,一把小提琴拉出a'--440Hz的声音,双簧管也吹出a'--440Hz的声音,它们的音高一样,音强也可以一样,但是一听就能年出哪个声音是小提琴,哪个声音是双簧管,其原因就是,它们各自的高频泛音成分各不相同。 各自的高频泛音不同,高频成分的幅度不同,所以说 音色个性也就不同。如果这个频段成分过小了,那么音色的个性就减色了,韵味也就失掉了,声音就有些尖噪,出现沙哑声,有些刺耳的感觉了。因此,高频段成分不要过量。然而又绝对不能没有,否则声音会失去个性。
中高音频段MID HF:600Hz∽6KHz
这个频段是人耳听觉比较灵敏的频段,它影响音色的明亮度、清晰度、透明度。如果这个频段的音色成分太少了,则音色会变和黯淡了,朦朦胧胧的好像声音被罩上一层面纱一样;如果这频段成分过高了,音色就变得尖利,显得呆板、发楞。
中低音频段MID LF:200∽600Hz
这个频段是人声和主要乐器的主音区基音的频段。这个频段音色比较丰满,则音色将显得比较圆润、有力度。因为基音频率丰满了,音色的表现力度就强,强度就大,声音也变强了。如果这个频段缺乏,其音色会变得软弱无力、空虚,音色发散,高低音不合拢;而如果这段频率过强,其音色就会变得生硬、不自然。因为基音成分过强,相对泛音的强度就变弱了,所以音色缺乏润滑性。
低音频段LF:20∽200Hz
如果低音频段比较丰满,则音色会变得混厚,有空间感,因为整房间都有共振频率,而且都是低频区域;如果这个频率成分多了,会使人自然联想到房间的空间声音传播状态。如果这个频率的成分缺乏,音色就会显得苍白、单薄,失去了根音乏力;如果这个频率的成分在音色中过多了,单元邓就会显得浑浊不清了,因而降低了语音的清晰度。
不同频率的细节对音色的影响
作为一名高级音响师,对各种不同频率的细节、具体特性,都应掌握得比较全面,这样就能提高调音技巧,而对音色修饰的处理能力也会得到提高。下面就介绍各种不同频率的细节对音色的影响。
16∽20KHz频率
这段频率范围实际上对于人耳的听觉器官来说,已经听不到了,因为人耳听觉的最高频率是15.1KHz。但是,人可以通过人体和头骨、颅骨将感受到的16∽20KHz频率的声波传递给大脑的听觉脑区,因而感受到这个声波的存在。这段频率影响音色的韵味、色彩、感情味。如果音响系统的频率响应范围达不到这个频率范围,那么音色的韵味将会失落;而如果棕段频率过强,则给人一种宇宙声的感觉,一种幻觉,一种神秘莫测的感觉,使人有一种不稳定的感觉。因为这些频率大多数是基音的不谐和音频率,所以会产生一种不安定的感受。这段频率在音色当中强度很小。但是很重要,是音色的表现力部分,也是常常被人们忽略的部分,甚至有些人根本感觉不到它的存在。
12∽16KHz频率
这是人耳可以听到的高频率声波,是音色最富于表现力的部分,是一些高音乐器和高音打击乐器的高频泛音频段,例如镲、铃、铃鼓、沙锤、铜刷、三角铁等打击乐器的高频泛音,可给人一种“金光四射”的感觉,强烈地表现了各种乐器的个性。如果这段频率成分不足,则音色将会会失掉色彩,失去个性;而如果这段频率成分过强,如激励器激励过强,音色会产生“毛刺”般尖噪、刺耳的高频噪声,对此频段应给予一定的适当的衰减。
10∽12KHz频率
这是高音木管乐器的高音铜管乐器的高频泛音频段,例如长笛、双簧管、小号、短笛等高音管乐器的金属声非常强烈。如果这段频率缺乏,则音色将会失去光泽,失去个性;如果这段频率过强,则会产生尖噪,刺耳的感觉。
8∽10KHz频率
这段频率s音非常明显,影响音色的清晰度和透明度。如果这频率成分缺少,音色则变得平平淡淡;如果这段频率成分过多,音色则变得尖锐。
6∽8KHz频率
这段频率影响音色的明亮度,这是人耳听觉敏感的频率,影响音色清晰度。如果这段频率成分缺少,则音色会变得暗淡;如果这段频率成分过强,则音色显得齿音严重。
5∽6KHz频率
这段频率最影响语音的清晰度、可懂度。如果这段频率成分不足,则音色显得含糊不清;如果此段频率成分过强,则音色变得锋利,易使人产生听觉上的疲劳感。
4∽5KHz频率
这段频率对乐器的表面响度有影响。如果这段频率成分幅度大了,乐器的响度就会提高;如果这段频率强度变小了,会使人听觉感到这种乐器与人耳的距离变远了;如果这段频率强度提高了,则会使人感觉乐器与人耳的距离变近了。
4KHz频率
这个频率的穿透力很强。人耳耳腔的谐振频率是1∽4KHz所以人耳对这个频率也是非常敏感的。如果空虚频率成分过少,听觉能力会变差,语音显得模糊不清了。如果这个频率成分过强了,则会产生咳声的感觉,例如当收音机接收电台频率不正时,播音员常发出的咳音声。
2∽3KHz频率
这段频率是影响声音明亮度最敏感的频段,如果这段频率成分丰富,则音色的明亮度会增强,如果这段频率幅度不足,则音色将会变得朦朦胧胧;而如果这段频率成分过强,音色就会显得呆板、发硬、不自然。
1∽2KHz频率
这段频率范围通透感明显,顺畅感强。如果这段频率缺乏,音色则松散且音色脱节;如果这段频率过强,音色则有跳跃感。
800Hz频率
这个频率幅度影响音色的力度。如果这个频率丰满,音色会显得强劲有力;如果这个频率不足,音色将会显得松弛,也就是800Hz以下的成分特性表现突出了,低频成分就明显;而如果这个频率过多了,则会产生喉音感。人人都有一个喉腔,人人都有一定的喉音,如果音色中的喉音成分过多了,则会失掉语音的个性、失掉音色美感。因此,音响师把这个频率称为“危险频率”,要谨慎使用。
500Hz∽1KHz频率
这段频率是人声的基音频率区域,是一个重要的频率范围。如果这段频率丰满,人声的轮廓明朗,整体感好;如果这段频率幅度不足,语音会产生一种收缩感;如果这段频率过强,语音就会产生一种向前凸出的感觉,使语音产生一种提前进人人耳的听觉感受。
300∽500Hz频率
这段频率是语音的主要音区频率。这段频率的幅度丰满,语音有力度。如果这段频率幅度不足,声音会显得空洞、不坚实;如果这段频率幅度过强,音色会变得单调,相对来说低频成分少了,高频成分也少了,语音会变成像电话中声音的音色一样,显得很单调。
150∽300Hz频率
这段频率影响声音的力度,尤其是男声声音的力度。这段频率是男声声音的低频基音频率,同时也是乐音中和弦的根音频率。如果这段频率成分缺乏,音色会显得发软、发飘,语音则会变得软绵绵;如果这段频率成分过强,声音会变得生硬而不自然,且没有特色。
100∽150Hz频率
这段频率影响音色的丰满度。如果这段频率成分增强,就会产生一种房间共鸣的空间感、混厚感;如果这段频率成分缺少,音色会变得单薄、苍白;如果这段频率成分过强,音色将会显得浑浊,语音的清晰度变差。
60∽100Hz
这段频率影响声音的混厚感,是低音的基音区。如果这段频率很丰满,音色会显得厚实、混厚感强。如果这段频率不足,音色会变得无力;而如果这段频率过强,音色会出现低频共振声,有轰鸣声的感觉。
20∽60Hz频率
这段频率影响音色的空间感,这是因为乐音的基音大多在这段频率以上。这段频率是房间或厅堂的谐振频率。如果这段频率表现的充分,会使人产生一种置身于大厅之中的感受;如果这段频率缺乏,音色会变得空虚;而如果这段频率过强,会产生一种嗡嗡的低频共振的声音,严重地影响了语音的清晰度和可懂度。
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 免费注册

本版积分规则

精彩推荐

快速回复 返回顶部 返回列表